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Using fully implicit conservative statements to close open
boundaries passing through recirculations
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SUMMARY

The numerical solution of the fluid flow governing equations requires the implementation of certain
boundary conditions at suitable places to make the problem well-posed. Most of numerical strategies
exhibit weak performance and obtain inaccurate solutions if the solution domain boundaries are not
placed at adequate locations. Unfortunately, many practical fluid flow problems pose difficulty at their
boundaries because the required information for solving the PDE’s is not available there. On the other hand,
large solution domains with known boundary conditions normally need a higher number of mesh nodes,
which can increase the computational cost. Such difficulties have motivated the CFD workers to confine
the solution domain and solve it using artificial boundaries with unknown flow conditions prevailing there.
In this work, we develop a general strategy, which enables the control-volume-based methods to close the
outflow boundary at arbitrary locations where the flow conditions are not known prior to the solution. In
this regard, we extend suitable conservative statements at the outflow boundary. The derived statements
gradually detect the correct boundary conditions at arbitrary boundaries via an implicit procedure using a
finite element volume method. The extended statements are validated by solving the truncated benchmark
backward-facing step problem. The investigation shows that the downstream boundary can pass through
a recirculation zone without deteriorating the accuracy of the solution either in the domain or at its
boundaries. The results indicate that the extended formulation is robust enough to be employed in solution
domains with unknown boundary conditions. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the past several decades, computer simulation models for analysing flow have played an
increasingly important role in flow field studies and simulations. In many fluid flow problems, the
domain in which we wish to solve the equations is unbounded. To solve the equations numerically,
it is necessary to distribute a suitable grid in the domain. To avoid unbounded grid distributions, a
standard approach is to place artificial boundaries in the unbounded domain to limit the unbounded
physical domain to a confined computational domain. From computational cost perspective, the
chosen artificial boundaries should not be placed so far from the domain of interest. Nevertheless,
in many fluid flow simulations with unbounded boundaries, a typical remedy is to place suitable
artificial boundaries in the domain and apply suitable boundary conditions. The determination of
where an artificial boundary can be placed and what kind of boundary conditions are the most
suitable ones obviously depend on the objectives of the study. For example, Behr et al. [1] and
Sohankar et al. [2] studied the dependence of the vortex-shedding phenomena on the placement
of the lateral and outflow boundaries, respectively. Using different types of boundary conditions,
they indicated that the distance between the lateral boundaries and the cylinder beyond and the
outflow location should be suitably chosen to avoid inaccuracies in the solution. Consequently,
cautious placement of the artificial boundaries is advocated.

One typical approach to treat suitable boundary conditions at artificial boundaries is to use the
open boundary conditions, OBCs. The essence of this approach is not to impose Dirichlet boundary
condition along the outflow boundary because the fluid may presumably enter or leave the domain
through such boundaries. The OBC approach has shown that the solution in the domain can pass
through the outflow boundary without undergoing significant distortion and without influencing the
interior solution. Griffiths [3] studies one-dimensional convection–diffusion problem and shows
that the use of OBCs in finite element methods of degree p is equivalent to imposing the condition
that the (p+ 1)st derivative of the dependent variable should vanish in the vicinity of the outflow.
In a similar study, Renardy [4] shows the robustness of OBCs at outflow using one-dimensional
convection–diffusion problem. Papanastasiou et al. [5] apply several types of outflow boundary
conditions including essential, natural, and free boundary conditions to solve the backward-facing
step problem. They argue that the free boundary condition is equivalent to extending the validity
of the weak form of the governing equations to the synthetic outflow instead of replacing them
with unknown essential or natural boundary conditions. Sani and Gresho [6] summarize the two
mini-symposia on OBCs to find the best OBCs for a small subset of backward-facing step problem.
They argue that the contributions obtained probably raised many more questions and doubts than
were solved. Then, they identify fuzzy boundary conditions as a new class of OBCs. Keskar and
Lyn [7] examine the problem of outflow boundary conditions using spectral domain decomposition
method considering two widely utilized set of conditions, i.e. pseudo stress-free conditions and zero
normal gradient conditions. Generally speaking, the results provided by such references indicate
the great effectiveness of employing OBCs at boundaries with unknown conditions.

From the conservation perspective, Blosch et al. [8] showed that the outflow boundary could
pass through a recirculation region without adverse effects on solution accuracy. They performed
their study on a staggered grid context. They used two inner and outer loops on the pressure
correction equation to guarantee a global mass-conserving procedure. Contrary to the staggered
grid context, Darbandi and Schneider [9, 10] have developed a pressure-based finite volume method
on a collocated grid arrangement using quadrilateral elements. Darbandi et al. [11, 12] have already
extended the method to use triangular elements. Recently, Darbandi and Naderi [13] extended
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the method to hybrid grid applications. The method has already shown excellent performance
and accuracy if the outflow conditions are imposed at proper locations with known boundary
conditions. In spite of using a finite volume method, the method does not necessarily guarantee
the conservation of either mass or momentum through the cells located on the outflow boundary.
Using either Dirichlet or Neumann boundary conditions at outflow, it was found that the bounded
physical solution domains with known boundary conditions might not be confined to smaller
computational domains with unknown boundary conditions. Following the past attempts described
in References [14, 15], we provide a global conservation procedure through the entire solution
domain including the outflow boundaries. The performance of the extended formulations is then
investigated in solving the truncated backward-facing step problem using non-variational uniform
and non-uniform grids. The investigation shows that the extended formulation enables the method
to solve the flow fields with arbitrary artificial boundaries. The extended formulation exhibits
excellent accuracy comparing with the results of past workers.

2. GOVERNING EQUATIONS

We solve the steady two-dimensional incompressible flow. The governing equations consist of the
conservation statements for mass and momentums, which are given by

∇ · (�V) = 0 (1)

∇ · (�uV) =−�p
�x

+ ∇ · (�∇u) (2)

∇ · (�vV) =−�p
�y

+ ∇ · (�∇v) (3)

where V (≡ uî + v ĵ), p, �, and � represent velocity, pressure, density, and the fluid viscosity
coefficient, respectively.

3. DOMAIN DISCRETIZATION

The solution domain is broken into triangular finite elements. The elements fully cover the solution
domain without overlapping. Figure 1 shows a small part of the solution domain. Nodes are located
at the triangle vertices, see nodes A, B, and C on triangle ABC. Nodes are the locations of the
unknown variables. There is no limit in the number of elements which share one node. For
example, there are six triangles which encompass node P, see Figure 1. To utilize the benefits of
cell-centred schemes, each element is divided into three quadrilaterals based on its three medians.
The medians are demonstrated by dashed line in this figure. The cells are then constructed from the
proper assemblage of these quadrilaterals. As it is seen, irrespective of the shape and distribution
of the elements, each node is surrounded by a number of quadrilaterals. The proper assemblage
of neighbouring quadrilaterals around any non-boundary node generates a cell with polygonal
shape. Figure 1 also shows a cell located at the boundary of the domain, which can be an outflow
boundary. In this case, the cell centre PB is exceptionally located on the cell’s face.
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4. COMPUTATIONAL MODELLING

To utilize the advantages of both finite element and finite volume methods, the governing equations
are initially integrated over an arbitrary cell, e.g. the shaded area in Figure 1. The employment of
Gauss divergence theorem to the governing equations results in∫

A
�V · dA= 0 (4)

∫
A
u(�V) · dA=−

∫
A
p dAx +

∫
A
(�∇u) · dA (5)

∫
A

v(�V) · dA=−
∫
A
p dAy +

∫
A
(�∇v) · dA (6)

The above integrals are evaluated over the faces of each cell. The total area of the faces is indicated
by A. The above equations are suitably treated using finite difference stencils and finite element
shape functions. In the above expressions, dA= dAx î − dAy ĵ is a normal outward vector to the
edges of cell. In case of a boundary cell, the vector is normal outward to the solution domain
boundary for those edges located on the boundary, see Figure 1. Using this definition, the above
integrals can be evaluated using summation over the cell faces. This yields

ns∑
i=1

[�(u dAx + v dAy)]i = 0 (7)

ns∑
i=1

[�uu dAx + �vu dAy]i =−
ns∑
i=1

(p dAx )i +
ns∑
i=1

[
�

(
�u
�x

dAx + �u
�y

dAy

)]
i

(8)

ns∑
i=1

[�uv dAx + �vv dAy]i =−
ns∑
i=1

(p dAy)i +
ns∑
i=1

[
�

(
�v

�x
dAx + �v

�y
dAy

)]
i

(9)

P B

A Boundary
Volume

P

A Finite Volume

A Finite Element

A
B

C

Figure 1. A part of the solution domain illustrating elements, an interior cell, a boundary
cell, and many sub-volumes and cell faces.
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Figure 2. The velocity upwinding strategy within an element.

where i counts the number of cell faces from 1 to ns. There are 12 cell faces around node P in
Figure 1. However, this number is 8 for the cell located on the boundary and identified by PB . To
linearize the governing equations, the bar over u and v indicates that these velocity components
are approximated from the known magnitudes of the preceding iteration. Such linearization is
essential to the nonlinear momentum convection terms. The rest of procedure is to relate the
cell face magnitudes (identified by lowercase letters such as u, v and p variables) to the nodal
magnitudes (identified by uppercase letters such as U , V and P variables). The nodal variables
represent the location of unknown variables in our algorithm. A simple idea for computing the
right-hand sides of Equations (8) and (9) is to use the finite element shape functions N j=1,...,3.
The treatment yields

pi =
3∑
j=1

(N j )i Pj (10)

��

�z

∣∣∣∣
i

=
3∑
j=1

�N j

�z

∣∣∣∣
i
� j (11)

where pi identifies the magnitude of p at the mid-point of the i th cell face. The subscript j
counts the nodes of an element. This element encloses the i th cell face. Additionally, the variable z
represents either x or y coordinates and � (and �) represents either u (and U ) or v (and V ) velocity
components. As was mentioned earlier, lowercase and uppercase letters are used to represent the
cell face and nodal magnitudes, respectively.

The above approximations end the treatment of pressure and diffusion terms at the cell faces.
However, more sophisticated expressions are required to treat the convection terms. For example,
to mimic the correct physics of the convection, the convection terms should be somehow upwinded.
To consider a more inclusive physics of the convection, References [11, 12] extend an upwind-
biased scheme (known as a physical influence scheme) within triangular elements. We also follow
their scheme. Considering the i th cell face located in triangle ABC, one inclusive expression can
be suggested as, see Figure 2,

�i =�k +
(

��

�s

)
i
�Ski (12)
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This expression has been written in the streamline direction at mid-point of the ith cell face. The
length �Ski is a geometry sensitive parameter denoted by s in Figure 2. The subscript k denotes the
upstream of the ith cell face. Using Equation (12), we have to determine the gradient of � along
the streamline. We try to approximate this gradient using the original governing PDE’s. In other
words, one inclusive approximation can be derived by writing the revised momentum equations
in the streamwise direction. The momentum equations can be revised to

�Vtot
��

�s
= ∇ · (�∇�) + S� (13)

where Vtot =
√
u2 + v2 is the total velocity at the cell mid-point and the source term S� represents

either (−�p/�x) in treating x-momentum equation or (−�p/�y) in treating y-momentum equation.
The substitution of Equation (13) in Equation (12) yields

�i =�k +
[

1

�Vtot
(∇ · (� ∇�) + S�)

]
i
�Ski (14)

As observed, the influence of pressure has been considered in calculating the correction term in
Equation (12). Using the finite-element tool, Equation (14) is revised to

�i =
3∑
j=1

(N j )k� j + 1

�(Vtot)i

(∑3
j=1 (N j )i� j − �i

L2
i

−
3∑
j=1

�N j

�z

∣∣∣∣
i
Pj

)
�Ski (15)

where Li is an appropriate diffusion length scale [9, 12]. This length can be estimated in a specified
triangle by discretizing the diffusion terms in x and y directions using suitable central-difference
schemes.

Equation (15) shows that �i appears on both sides of this equation. Considering a lagged role
for � in the diffusion term, it results in a passive role of diffusion term in the formulations. To
shift its role into an active one, we took this term to the left-hand side of Equation (15). A suitable
rearrangement of Equation (15) in terms of our major dependent variables, i.e. � j and Pj , finally
yields

�i =
3∑
j=1

�i j� j +
3∑
j=1

�i j Pj + �i (16)

If the subscript i denotes the three cell faces within an element, see Figure 2, �, �, and � represent
two 3× 3 matrices, and one 3× 1 array of coefficients, respectively. These coefficients measure
the weights of pressure and velocity field magnitudes on the cell face velocity magnitude. Equation
(16) indicates that � (≡ u, v) at a cell face can be approximated by the proper assemblage of �
(≡U, V ) and P magnitudes at the cell centres of the element, which surrounds that cell face. In
fact, this approximation is known as the pressure-weighted streamline upwinding scheme [9–13].
Using a second-order central-difference scheme to discretize the diffusion and pressure terms and
a first-order upwind scheme to discretize the convection term in the streamwise direction, the
current method is classified into first-order pressure-based methods.

The substitutions of Equations (10), (11) and (16) in Equations (7)–(9) provide three conservative
statements for each cell in the domain. If the conservative statements are obtained for all the cells
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in the computational domain, a set of algebraic equations is derived. This set of equations can be
compacted into

cpui j U j + cpvi j V j + cppi j Pj = d p
i (17)

cuui j U j + cuv
i j V j + cupi j Pj = dui (18)

cvu
i j U j + cvv

i j V j + cvp
i j Pj = dv

i (19)

where i and j count the global node numbers, i.e. i, j = 1, . . . , Nnode. Equations (17)–(19) provide
a strong coupling of the velocity and pressure fields within the mass and two momentum equations.
It should be noted that the matrix is a diagonal one, which is normally encountered in implicit
finite element methods. Therefore, it is strongly sparse and needs sparse solver strategies to solve
it efficiently. The coefficients in the global assembled matrix are identified by c. The first letter
in its superscripts depicts the type of equation, i.e. p, u, and v indicate continuity, x-momentum,
and y-momentum equations, respectively. The second letter in the superscripts indicates of which
unknown the coefficient belongs to. The right-hand side vector is shown by d.

Similar to other collocated methods, the current method fully conserves mass and momentum
fluxes over each interior cell. However, dissimilar to many other collocated finite volume methods
(which normally benefit interpolation schemes such as upwinding, skewed upwinding, quadratic
upwind differencing, and hybrid to approximate the cell face velocities), the current method
considers a more inclusive statement through using a pressure-weighted streamline upwinding
scheme to approximate the cell face velocities. Evidently, the latter statement should be more
accurate than the primitive mathematical-based statements.

After deriving an inclusive statement for the cell face velocity components in the interior
domain, see Equation (16), the next stage is to use them to close the domain boundaries to achieve
global conservations of mass and momentum fluxes through the entire solution domain including
its boundaries, and specifically the open boundaries with unknown flow conditions. The outflow
boundary is the most ambiguous one among the others because of its unknown flow conditions.
The ambiguity is magnified if the outflow is placed at locations where the flow field gradients are
large in different directions. Therefore, care should be taken to close such boundaries because of
their ambiguous circumstances.

Figure 3 shows the details of a boundary cell located at the outflow boundary of Figure 1.
There are three nodes located on the boundary. They are identified using global node numbers of
N−
b , Nb, and N+

b . Additionally, there are two cell faces above and under node Nb, which need
to be considered in our conservation procedure properly. These two faces are labelled by their
mid-points, i.e. i p−

b and i p+
b . To complete the conservation procedure, the mass and momentum

fluxes need to be calculated properly and implemented in the conservation statements at these two
faces. It should be reminded that all the fluxes at the interior faces, i.e. i p1, . . . , i p6, have been
already calculated and included in Equations (17)–(19).

At the first stage, we need to calculate u−
i pb

, v−
i pb

, u+
i pb

, and v+
i pb

to smoothen the conservation
procedure. We use finite element shape functions to estimate them from the nodes located at the
vertices of their elements. This is achieved using

�i pb =
3∑
j=1

(N j )i pb� j (20)
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Figure 3. A cell located on the domain boundary showing the contributing nodes (circles)
and integration points (crosses) at its faces.

where � (and �) represents either u (and U ) or v (and V ) velocity components. These velocities
are used to calculate mass flux at the two boundary faces. If the boundary mass flux is identified
by L pm , it is calculated from

L pm =
2∑

i pb=1

[
�

(
3∑
j=1

(N j )i pbU j dAx +
3∑
j=1

(N j )i pb Vj dAy

)]
i pb

(21)

This mass flux is added to the LHS of the continuity equation, i.e. Equation (17). The effect of
this assemblage is only appeared in one row of the algebraic set of equations. To be consistent
with the interior cells, the velocity calculated in Equation (16) is used to compute the convection
fluxes. They are given by

Luc =
2∑

i pb=1

[(
3∑
j=1

�′
i pb, jU j +

3∑
j=1

�′
i pb, j Pj + �′

i pb

)
(�u dAx + �v dAy)

]
i pb

(22)

Lvc =
2∑

i pb=1

[(
3∑
j=1

�′′
i pb, j V j +

3∑
j=1

�′′
i pb, j Pj + �′′

i pb

)
(�u dAx + �v dAy)

]
i pb

(23)

The coefficients in the above expressions are adequately added to the LHS of x- and y-momentum
equations, Equations (18) and (19). The diffusion fluxes are also computed on the two cell faces
using the gradients of the finite element shape functions, Equation (11). This consideration yields

Lud =−�
2∑

i pb=1

[
3∑
j=1

(
�N j

�x
dAx + �N j

�y
dAy

)
Uj

]
i pb

(24)

Lvd = −�
2∑

i pb=1

[
3∑
j=1

(
�N j

�x
dAx + �N j

�y
dAy

)
Vj

]
i pb

(25)
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The treated diffusive terms are added to the LHS of Equations (18) and (19). Eventually, the
pressure terms also need to be treated properly. Since we place the outflow boundary at an arbitrary
section, we are not able to enforce either Dirichlet or Neumann conditions to specify pressure
at this location. Therefore, the roles of pressure terms are implicitly taken into the formulation
without the knowledge of their magnitudes at the boundary. In this regard, the pressure terms are
approximated by

Rup = −
2∑

i pb=1

(
3∑
j=1

N j P j dAy

)
ipb

(26)

Rvp =−
2∑

i pb=1

(
3∑
j=1

N j P j dAx

)
ipb

(27)

These terms are taken to the RHS of Equations (18) and (19). This treatment considers the implicit
role of unknown pressure at the outflow calculation. In practice, one x-momentum equation is
sacrificed to specify the pressure magnitude at one arbitrary node in the domain. It should be noted
that the specification of such a magnitude is mandatory, otherwise, the pressure field is not fixed.
However, this node is not necessarily to be a boundary node.

5. THE RESULTS

The extended formulations, which fully guarantee the conservation laws not only in the interior
cells, but also at the outflow boundary cells, are investigated by solving the backward-facing step
as a standard test case. This test case is known as a difficult one, which is occasionally truncated
to study the newly developed boundary condition treatments. The problem definition used here
follows Gartling [16], which will allow the comparison of the computed results. Considering a
channel height of H, the step height and downstream channel length are H/2 and 30H , respec-
tively. However, we mainly solve the problem on a shortened domain. The problem is tested at
Re= 800, which results in two primary and secondary recirculations behind the step. The bench-
mark computations of the backward-facing step flow at this Reynolds were originally intended for
use in a mini-symposium on OBCs as well [6]. It is argued that the flow at this Reynolds number is
unsteady and exhibits chaotic behaviour [17]. The flow boundary conditions for the step geometry
include the no-slip velocity specifications for all solid surfaces, and a parabolic velocity profile at
the inlet given by U (y)= 1.5 ×Umean(4y+)(2 − 4y+) where 0�y+(= y/H)�0.5.

For the outflow boundary conditions, Gartling [16] considers a parallel flow and a constant
total stress normal to the outflow boundary, which, in essence, sets the outflow pressure to zero.
Generally speaking, the use of pseudo stress-free condition has been very popular for computations
over the entire full channel case. This type of natural boundary condition (i.e. −p+(�u/�x)/Re= 0
and �v/�x = 0) can be readily applied at the outlets sufficiently far from the inlets. Sani and Gresho
[6] remark that the natural boundary condition is preferable to the true stress-free condition (i.e.
−p + 2(�u/�x)/Re= 0 and �u/�y + �v/�x = 0) because this type of boundary conditions tends
to be too restrictive for most flows, at which all stresses do not necessarily vanish at an outflow
boundary. The zero normal gradient condition and the radiation condition are two more types of
boundary conditions, which have been successfully employed specially in treating the transient
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problems where vortices must leave the computational domain with minimum distortion [1, 2].
For a steady flow, the latter condition should revert to the former one when the steady condition
is approached. Despite their general popularity, Sani and Gresho [6] argue that these conditions
may yield ill-posed problem. In our formulation, we fully close the outflow boundary without
employing any type of boundary condition. In other words, except for the pressure magnitude,
which is adjusted for only one arbitrary node located at the outflow boundary, the rest of boundary
cells are fully closed. As was mentioned earlier, this node or point is not necessarily to be on the
outflow boundary. It can be an interior node as well; however, we have fixed this magnitude at the
outflow boundary in our study. Except this exceptional node, the unknown pressure is specified
implicitly via the momentum equations for the rest of cells located at the outflow, see Equations
(26) and (27).

It should be mentioned that the accuracy of the extended formulation has been already verified.
Therefore, we do not intend to re-verify the accuracy of the original code in treating fully bounded
solution domains, see References [11, 12]. References [14, 15, 18] solve the extended backward-
facing step problem and show excellent agreement with the benchmark. Nevertheless, the results
of the present code are judged to be very accurate in bounded domains. In this work, the validity
of the developed boundary conditions is determined by truncating the channel and the original
mesh and applying the new formulation at the new synthetic outflow plane. No grid rearrangement
was performed when the channel was truncated. Different types of grid can be distributed in the
computational domain to guarantee the most accurate solutions when Xend is placed at different
longitudinal locations. However, we intend to show the accuracy of the formulation using identical
grid distributions. Therefore, we perform the current investigations in two stages. At the first stage,
we choose a suitable non-uniform grid distribution along the longitudinal direction. The choice
of non-uniform grid is quite normal in treating the backward-facing step problem [7, 16, 18]. It is
because the flow is almost fully developed in a major part of the duct downstream of the step. That
part does not need fine grid considerations. On the other hand, Sani and Gresho [6] specify that no
extra fine meshes be used near the outlet, presumably because the effect of the OBC would thereby
be limited by local finite difference and finite element approaches. Indeed, the flow complexities
mostly exist around the separation zone beside the step. At the second stage, we ignore the above
recommendations and follow the grids utilized by Blosch et al. [8]. They are uniform coarse grid
distributions.

To study the performance of the new formulations, the computational domain downstream of
the step is shortened by a few lengths of 6.5, 8.0, 9.5, 11.0 and 16.0. There are different reasons
to choose these specific lengths. Blosch et al. [8] report their results at the lengths of 8.0 and 16.0.
The lengths of 6.5, 8.0 and 9.5 were purposely selected to cut the upper eddy, thus providing the
challenge of letting fluid also flow into the domain. The cross-sections at 6.5 and 9.5 intersect
the ends of the upper eddy where the tangential velocity components are not small. Additionally,
the length of 6.5 is even shorter than 7.0, which was chosen as a test section by the organizers
of the OBCs mini-symposium [6]. A short length of either 7.0 or 6.5 can severely test the ability
of an OBCs to allow flow to return into the truncated domain. Since the centre of upper vortex is
located around 7.5, section 6.5 is a better choice than 7.0 to study the impact of non-zero tangential
velocity components. Additionally, section 6.5 is right after the reattachment point of the lower
recirculation (∼ 6.1). The section at 11.0 is chosen because it is right after the reattachment point
(∼ 10.5) of the upper eddy. The transversal grid distribution involves 41 uniform nodes. However,
the longitudinal distributions are 151, 201, 243, 271, 321 and 351 for Xend = 6.5, 8.0, 9.5, 11.0,
16.0 and 30.0 cases, respectively. To achieve a unique grid distribution, firstly we distribute 351
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Figure 4. Streamlines in a backward-facing step using a non-uniform grid with Xend = 6.5, 8.0, 9.5, 11.0,
16.0 and 30.0 from top to bottom, respectively.

non-uniform nodes in the streamwise direction in the channel with its outlet boundary placed at
Xend = 30. Secondly, we cut the channel at Xend = 16.0, 11.0, 9.5, 8.0 and 6.5 without changing
the original distributed grid and solve the flow in the truncated domains. Since the original grid
distribution is non-uniform, we name it a non-uniform grid.

Figures 4–6 demonstrate the results obtained using the non-uniform grid. Figure 4 shows the
streamlines in the duct. As observed, the qualitative distributions are identical irrespective of
placing the outflow at different locations. The outflow section intersects the upper recirculation
zone when Xend = 6.5, 8.0 and 9.5; however, this cut does not deteriorate the solution even in
the vicinity of the outflow sections. Note that Figure 4 only shows the first 24 step heights of
the channel since few phenomena of interest occur downstream of this point. Generally speaking,
one important factor in solving the step flow problem is to compute the locations of separation
and reattachment points on the two upper and lower walls accurately. Considering the worst cut
at Xend = 6.5, Figure 4 shows that the locations of reattachment point on the lower wall and the
separation point on the upper wall are not affected in the truncated domains.
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Figure 5. U and V velocity profiles at x = 7.0 station using a unique non-uniform grid
distribution and considering different Xend locations.
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Figure 6. Pressure distribution along the upper and lower walls using a unique non-uniform grid distribution
and considering different Xend locations.

Figures 5 and 6 quantify the accuracy of the current solutions if the outflow is located at
different longitudinal places. Figure 5 demonstrates U and V velocity profiles at x = 7.0 station
and compares these profiles with those reported by Gartling [16] as the benchmark solution.
Similarly, Figure 6 provides the pressure distributions along the lower and upper walls of the
channel and compares them with the benchmark results. These two figures indicate that the current
algorithm and formulation accurately solve the problem in spite of placing the outflow boundary
at different locations even very close to the step. This is in contrast to the results of Behr et al. [1],
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Figure 7. Streamlines in a backward-facing step using a uniform grid with Xend = 6.5, 8.0, 9.5, 11.0, 16.0
and 30.0 from top to bottom, respectively.

Sohankar et al. [2], and Bao and Xin [19], who show that the solution accuracy can be improved
if the location of artificial boundary is moved sufficiently far from the domain of interest.

The second stage of the current investigation focuses on a uniform grid distribution. Following
Blosch et al. [8], we also choose a coarse uniform grid distribution and ignore the benefits of
using a non-uniform grid in the vicinity of the inlet. Therefore, we uniformly distribute 301 nodes
in the full-length channel with Xend = 30.0. This grid distribution is identical with the distribution
presented in Reference [8]. Our anticipation is that the choice of this grid resolution would
deteriorate the solution specifically around the recirculation zones and close to the inlet section.
This anticipation is normal because of coarsening the grid in the vicinity of the inlet compared
with our non-uniform grid utilized at the first stage of this study. Since the grid is uniform, the
longitudinal distributions become 301, 161, 111, 96, 81, and 66 when Xend = 30.0, 16.0, 11.0, 9.5,
8.0, and 6.5, respectively.

Figure 7 shows the streamlines obtained using the uniform grid distributions. Comparing the
streamlines with each other in this figure and with those presented in Figure 4, they indicate
that the separation and reattachment points and the streamline patterns are schematically the same
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Figure 8. U and V velocity profiles at x = 7.0 station using a unique uniform grid dis-
tribution with considering different Xend locations and a comparison with the available

results of Blosch et al. [8] at Xend = 8.0 and 16.0.
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Figure 9. Pressure distributions along the upper and lower walls using a unique uniform grid distribution
and considering different Xend locations.

irrespective of using uniform grid distributions and placing Xend at different longitudinal positions.
Comparing Figure 7 with Figure 4, a slight difference is observed at the upper recirculation and
close to the outflow section when Xend = 8.0. The comparison indicates that the use of a coarse
grid close to the inlet may not allow a perfect convergence of the streamlines at the upper face of
the outflow section.

Similar to Figures 5 and 6, Figures 8 and 9 show the details of solutions in the channel.
Comparing the former figures with the latter ones, it is concluded that the details of solutions
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Figure 10. Pressure distribution at x = 7.0 station using either a unique non-uniform (left) or a unique
uniform (right) grid distributions with different Xend locations.

are not altered by switching from a suitable non-uniform grid to a plain uniform grid. On the
other hand, comparing the current results with those of benchmark denotes that the achieved
accuracies are still excellent despite using uniform coarse grid distributions. As was mentioned,
the current grid distribution has been taken from Reference [8]. This reference reports the U and
V velocity profiles at x = 7.0 station. We use this opportunity and compare our results with those
of Blosch et al. [8] at this section, see Figure 8. We have not included the U velocity profiles of
the reference in this figure because they are in full agreement with that of Gartling. However, their
V velocity profiles are not as accurate as ours, see Figure 8 (right). As it is seen, the reference
obtains lower values than the Gartling benchmark solutions when placing Xend at 8.0 and 16.0
locations. However, the accuracy of the current solution is excellent irrespective of the location
of the outflow boundary. There is just a slight difference between the current results and that
of benchmark. Reference [14] shows that this slight difference is vanished if the utilized grid is
further refined in the vicinity of the inlet, of course, without changing the number of nodes in the
longitudinal direction.

To quantify the pressure field more, Figure 10 illustrates the pressure distribution at the critical
section of x = 7.0 using either non-uniform or uniform grid distributions and compares them with
the pressure distributions computed by Gartling [16]. Similar to the preceding figures, the results
reemphasize the accuracy of the extended formulation irrespective of the types of grid distribution
and the location of outflow boundary.

To compare the efficiency of the current outflow boundary treatment with those of other appli-
cable outflow condition employments, we examine our formulations imposing two other classical
non-OBC and OBC cases utilized in the finite volume method. Back to the vast range of OBCs
collected in Reference [6], there are two groups, who investigated the truncated backward-facing
step using finite volume method. Demuren and Wilson solved the two-dimensional steady equa-
tions on a staggered grid. They reported that �V/�n = 0 produced the best results in the sense
of minimal sensitivity to computational length and the correct pressure distribution across the
outflow for the short-length computations. Similarly, we choose �u/�x = 0 as one class of OBC
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Figure 11. The implementation of two other types of non-OBC and OBC at outflow boundary and
comparing their results with those of the current work and benchmark, x = 7.0.

to check its efficiency in our formulations. We call it B.C. 1. On the other hand, following
the essence of Gartling’s outflow boundary condition described in this section and assuming the
lack of sufficient knowledge to assess the correct outflow boundary condition employment, we
choose incorrect zero pressure at outflow boundary as a non-OBC condition and call it B.C. 2.
Figure 11 shows the profiles of longitudinal and transversal velocity components at x = 7.0 using
these two types of outflow conditions. The results have been compared with those of the current
work and Gartling [16]. A few points can be derived here. Firstly, the results have been provided
for a truncated domain with Xend = 8.0. It is because the results of employing B.C. 1 and B.C. 2
on longer domains were in good agreement with the two other results. It was observed that the
differences would become more serious when the outflow section was placed closer to the inlet
section. Secondly, contrary to the v velocity profiles, there are negligible differences in u velocity
profiles using either B.C. 1 or B.C. 2 at Xend = 8.0. Meanwhile, both of them agree well with the
benchmark. Thirdly, the efficiency of B.C. 1 with respect to B.C. 2 is not similar when Xend is
further reduced. Our observations showed that the solution using B.C. 2 would not converge for
very short domains.

From the convergence point of view, it is a good question whether the new outflow treatments
affect the rate of convergence. Generally speaking, it is quite normal to assume that the displacement
of an outflow boundary from a section with known conditions to another section with unknown
conditions would slow down the convergence rate. Figure 12 illustrates that the rate of convergence
or the residual reduction rate decreases when Xend is located farther from the step. The results
belong to the uniform grid case, which was investigated in the second stage of the current study.
The horizontal coordinate performs the number of iterations. The figure points out that the insertion
of the outflow boundary at arbitrary sections with more uncertainties would increase the iterations.
However, it should be realized that this increase would not cause an adverse effect on computational
cost because there are a few benefits in diminishing the size of global matrix derived in Section 4,
i.e. Equations (17)–(19). Since we use sparse matrix solvers to solve the derived system of linear
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Figure 12. Convergence histories for solving the problem using a unique uniform grid distribution
considering different Xend locations.

algebraic equations, there is a big reduction in the solution time spent by our sparse solver when
the size of constructed matrix of coefficients is relatively reduced.

Although the current formulation has been applied to steady problems, it can be equally applied to
solve unsteady problems. Considering the convergence histories of the steady backward-facing step
problem presented in Figure 12, some conclusions can be readily derived if the same formulation
and algorithm are utilized to solve an unsteady problem. For example, it is easily concluded that
if the exit boundary is placed at different chosen locations there would be a little difference in the
numbers of cycles to achieve the solution at each time step of a time-dependent solution. As was
mentioned in the preceding paragraph, the employment of our improved formulation effectively
reduces the computational time if the exit boundary is placed closer to the inlet section. It is
because the size of the global matrix derived in each time step is considerably decreased due to
the reducing total number of grid nodes in smaller solution domains. However, before using this
strategy to solve a time-dependent problem, it is always worth to answer the question whether the
use of a fully implicit method to solve an unsteady problem is computationally cost-effective.

6. CONCLUSIONS

A major challenge in the computational fluid dynamics is to reduce the computational cost by
diminishing the solution domain sizes. However, this may normally result in solution domains with
insufficient information at their artificial boundaries. To overcome the difficulty, an approach, which
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implicitly closes the conservative statements at the boundaries with insufficient information, was
introduced. The extended outflow boundary treatment is fully conservative, and implicitly considers
the role of unknown pressure field at the outflow. The extended formulation was then investigated
by solving the truncated backward-facing step problem with different lengths. The investigation
showed that the location of outflow boundary could be arbitrarily changed without adverse effect
on the accuracy of the solution. The accuracy of the solution was excellent despite cutting the step
at improper longitudinal locations where a recirculation was intersected. Additionally, it was shown
that the accuracy of the current solutions was not so sensitive to grid distribution although the step
flow problem is known as a mesh-dependent problem. From the computational cost perspective,
the new implicit treatment decelerates the convergence rate; however, the computational time
does not equally increase because the matrix of coefficients becomes considerably small. The
extended formulation is ideal for treating the fluid flow and heat problems with complex boundary
behaviours.
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